Why Engineer — Chapter 2: What should you put in your head?

What does it take to become an engineer?  Being born helps.  Being born curious helps a lot.  Being born skeptical adds a chunk more.  Being born cheap – not so much.  Most engineering projects are expensive.  Get used to big money, just don’t get enamored with it.  If for no other reason, big projects fail because they cost too much, thus the emphasis on low cost designs.  Low cost designs use fewer resources and are thus usually easier on the environment overall.  And remember, your customer is part of your environment.

One thing that obviously costs quite a bit is education.  So, the question you must ask first is, how much is enough?  Surprisingly, it has been my observation that you don’t really need all that much, and even the quality of the education isn’t all that important – this from a guy who went to top engineering schools, and has a Masters degree, and had very good grades, but here comes the dirty little secret.

So how much is enough?  Earl didn’t go to college.  He never even finished high school, as you already know.  He worked his way into engineering by having an aptitude for it and by hard work and private study.  That sort of thing was more common back then.  It still happens in rare cases today, but employers want people with degrees.  And advanced degrees may even result in higher pay.  We’ll get into the subject of pay in another chapter.

Why do employers demand that you have a degree?  Because interviewing tells you very little about a person.  Grades are at least of some interest, and more objective.  Also, if a company does not have degreed engineers, they are less likely to land business that requires engineering work.

“Hi, my company is interested in engineering this project for you.  I have an exceptionally experienced staff of 25 very capable engineers, and the engineers in charge have college degrees.”

or

“Our staff of highly educated and experienced engineers, lead by Dr. Etcetera, can provide your project with advanced engineering designs well suited to make you project a success.”

Easy choice.

Face it, you are going to have to go to college, and your choices of jobs may be a little better with good grades.  Some companies have a list of acceptable schools.  And some even refer to that list if you have twenty or more years of experience, even though the schooling happened twenty or more years ago.

On the other hand, assuming you stay with a company for a number of years, where you went to school and what your grades were quickly drop out of the picture in the vast majority of  circumstances.  Once you have shown them how good you are, that becomes the key to your future, not your education.  Education may get you the job, but it does not do much for you once you are there.

Why is that?

Engineering, like other professions, demands things that you can’t learn in school.  And, it demands a lot less of what you learned in school than you think it will.  I am not advocating that you slack off in school.  Learning the language of engineering, learning to think hard before jumping to a conclusion, and finding your best engineering traits are all valuable to you.  However, if you aren’t the brightest in your class, you may still make out well in the profession.  I have seen at least one person, who never did any real engineering, and never really understood what he did for a living.  He wound up as a vice-president.

OK, he was an outlier in the data of career success, but I think you can find surveys that show that the incomes of engineers bear little or no correlation with college grades.  The point is, work hard, but don’t obsess about you future career.  College is very different from the real world.

In that regard, here is a statement that may surprise you.  Exceedingly few engineers ever use calculus again once they leave college.

And here is the bad news, a good working knowledge of statistics can be very helpful.

However, if you were to ask me what is the most important math skill you will need, I would tell you it is being able to formulate and solve word problems.  That’s good news for some, and bad news for others.  Your personal skill in this area will not necessarily ruin your career, it just means that you may or may not be a truly technically oriented engineer.  Know what your skills and limitations are and go where they lead you.

So, what else should I tell you?  Well, the things that fascinate you – hobbies, things you tend read about, etc. – are probably the best measures of the type of engineer you are going to be.  If you are not fascinated by machines and the things that they do, don’t bother with mechanical engineering.  You get the picture.  Always go with what interests you, what you are curious about.

That is not to say that a general knowledge of other aspects of engineering is of no use to you.  In the real world, most projects involve several engineering disciplines.  Knowing something about what the other person is doing is often a critical issue in making sure that you are not working at cross purposes.

If nothing in engineering really fascinates you, don’t choose it simply because you are good with math and science.  I had a college intern work for me one summer.  He was going to an expensive school to ultimately get his Ph.D. in engineering, and he was truly the possessor of a smart brain.  However, he did not seem to be the engineer type.  Smart, yes.  Practical, no.  As with most interns, you have to put them on some job that your own career can withstand, something relatively harmless (cynical, I know, but always wise).  We had a project that used an already designed and built commercial high pressure pump.  However, it needed some modification.  One of the things it needed was a passageway to get oil to one of the gears.  The job was not urgent.  Giving it to him would give him some practical experience without putting my own career in jeopardy.  I showed him the task at hand, and he accepted it with boyish enthusiasm.  He assured me he would have it finished by the afternoon.  I knew that wouldn’t happen, but I kept my mouth shut.  Problems involving machining tolerances and moving parts are usually hard to solve, yet they look easy to the untried eye.  I would have laughed at him, but he was a good kid, and it was not my intent to demean him.  Two weeks later, he had not figured it out.  He was very sorry, and I explained that it was a hard problem and that he shouldn’t worry about it.  I gave the job to a layout draftsman (who had no degree, but oodles of experience), and he solved it in a day.  Meanwhile the intern went off to get his Ph.D., and I hope to an ultimate goal of working in research, a place where he would really fit well.

Bottom line:  Keep in mind that some companies like certain schools, and then go to whatever school that meets your needs.  An expensive education isn’t the goal.  Get a degree in what interests you.  Work at it seriously.  Do your best and leave it at that.  It is not a race to be better than the other guy.  Most of it, you will never use!

Why Engineer? — Chapter 1: What is engineering?

Before I get started on the details, let me just say that I am going to indirectly ignore something that some engineers wind up doing:  operating complicated processes, plants, or facilities.  That does’t mean that what I am about to tell you doesn’t apply under those circumstances.   It does, but in ways that are less obvious.  Another similar category that I am indirectly ignoring is the engineering task of testing, which is also an important occupation of many engineers.  You might like it.  So, keep those job styles in mind if those types of engineering interest you.  What I am going to address directly is the engineering required in defining a product to be manufactured.

So…onward!

Do you like a good mystery?  Well here is one for you.  What is engineering?  Is it a subset of science?  Some think so.  In some cosmic way some may even think that engineering “works” for science.

Nearly everybody can tell you what science is, or at least what they picture it to be.  And no doubt everybody can tell you what mathematics is, at least the parts of it they have seen.  Yet only a few people can tell you what engineering is…and many of those who cannot are engineers!

You learn basic math and science in grade school, but not engineering.  And they only teach you “engineering science” in college.  You don’t really learn engineering anywhere except on the job.  And few there are who learn the lesson well, although they usually learn the job.  That’s why it’s so hard to find out what engineering is.

Let’s start with the dictionary.  And see if we can make any progress.

The first part of the second definition in Merriam-Webster on the Web is:

“the application of science and mathematics by which the properties of matter and the sources of energy in nature are made useful to people”

I like that, but it needs something.   Also, it excludes products that don’t use either energy or matter.   Wait a minute, there is a dictionary on my Mac, and part of it reads:

“skillfully or artfully arrange for (an event or situation) to occur”

That adds something of value, but we’re still missing the target.  Maybe we should look at the etymology of the word (That means the origins of the word.  I promised myself that I would not use strange or seldom used words – just so things would be clear.  I guess I lost it here.)  According to the “Online Etymology Dictionary” (etymoline.com), the origin of “engineer” and words related to it is:

engineer (n.)

early 14c., “constructor of military engines,” from O.Fr. engigneor, from L.L. ingeniare (see engine); general sense of “inventor, designer” is recorded from early 15c.; civil sense, in ref. to public works, is recorded from c.1600. Meaning “locomotive driver” is first attested 1832, Amer.Eng. The verb is attested from 1843; figurative sense of “arrange, contrive” is attested from 1864, originally in a political context. Related: Engineered. Engineering as a field of study is attested from 1792; an earlier word was engineership (1640s). Engineery was attempted in 1793, but it did not stick.”

It’s interesting to note that the term “train engineer” didn’t show up until 1832.  At any rate, as interesting as the etymology may be, it doesn’t add a lot more to the mix.  So, what are we missing?  Could it be something I have already told you?

“An engineer is someone who can do for one dollar what any fool can do for ten dollars.”

Aha!  You didn’t read the Preface.  Can’t blame you.  I usually don’t read prefaces either.

OK, I think we have enough.  Besides, this is getting boring.  Let’s see if I can come up with one good, simple sentence definition that  grabs the full essence of engineering.  Here is one possibility.

“Engineering:  the art of using the right combination of science, mathematics, or whatever to produce a simple, easy to manufacture, easy to inspect, easy to use, and easy to maintain design that is dirt cheap.”

All the way from art to dirt, with a “whatever” in the middle.  Can I convince you  of the truth of this definition?  Alright, here is an example.

Earl was a design engineer at Republic Aviation Corporation, affectionately referred to by the inmates as the “Repulsive Aggravation Corporation.”  When Republic was making their first afterburner[1], they faced a difficult problem – thermal distortion and the stresses that it produces.  Because of the high temperatures involved, this experimental project was administered by the thermodynamics[2] group.  Their first design was named after the manager of that group.  The first test of it was quite short.  In a matter of a few seconds the afterburner  rolled itself up in a ball and exited the engine like a missile.  Less than a second after that, the design was renamed after a lower level engineer.  Then the design was redone to include more parts to allow it to expand as the temperatures rapidly climbed.  Another ball, another missile.  After a final futile trial, the thermodynamics group threw up their hands, walked off the job, and threw the job over the wall to the design group.   At this point the design fell into Earl’s lap.  Now Earl was not a highly educated engineer, in fact, he never finished high school.  Still, he was no slouch.  If anyone knew what a non-thinking machine was actually thinking, Earl did.  His philosophy was that sometimes you had to defy Mother Nature.  So, in defiance of all that was considered rational, he bolted the afterburner in place as solidly as possible, with no allowance for expansion.  No surprise, it worked.

Now you can argue over the practicality of this approach, but there is always that cliché, “nothing succeeds like success.”  Was it art, science, mathematics, or whatever that produced the success?  Well, it wasn’t science or mathematics.  If you wanted that, you should have stuck with the thermodynamics group, but then you would not have had a success.  If this bothers you, go read the preface again.  You don’t find all the answers in a book when it comes to engineering.  Remember —

“An engineer is someone who can do for one dollar what any fool can do for ten dollars.”

If we had to wait for science and mathematics to solve all of our problems, some designs would never come to fruition.  Engineering costs money and time.  The money is not there forever, nor is the time.  Customers move on.  Everyone has their limits.  Whether the primary basis of the design is science, mathematics, or whatever, if it is not leading you down the path to the “one dollar” solution, it will not end in success.

By the way, Earl is not some theoretical guy.  He is not a made up example.  He was born in 1910 and died in 2004.  He was my father.  I will tell you more about him as the book goes on.

So if the new afterburner design was neither scientific nor mathematical, what was it?  This example seems like a case of “whatever”.  Earl had a hunch it would work.  After all, you don’t work with machines nearly all of your life and not get a feel for what works best, what is possible and what isn’t.

Maybe now is a good time to discuss the order of things in my definition of engineering.  When I wrote it, I put “art” first.  Science didn’t show up to be the supreme leader.  Science does not invent things.  However, there is a practical reason for using science.  It is repeatable.  It sets limits.  It reigns in impractical and impossible dreams.  It often brings sanity into the mix of ideas, but not always.

If you want a repeatable, predictable, explainable design you need two things:  a scientific basis that allows a paper analysis of the design, and an ability to test the results in properly simulated situations.  Generally speaking, it is always best to have a scientifically based design.  However, and we can talk about this later, science doesn’t know everything.

Unfortunately, neither science nor mathematics can always get there from here.  As in the example of the afterburner, you may have to depend on a good engineering hunch with no science to back it up – possibly a hunch that defies science.  I list hunches as a subset of “whatever”.

Ultimately though, engineering is an art, not an art whose sole purpose is to produce an aesthetic effect, but rather an art that finds the cheapest way to satisfy a set of requirements.  It is even used to determine the cheapest requirements in the first place.  So, I am going to leave art in first place.  It is the art of knowing which way to go to get to the finish line.

We will go into the details later, but this is probably enough for the first chapter.  You should at least have an idea now that engineering is not a subset of science, and that engineering a one dollar solution to a ten dollar problem is hard work.


[1] An afterburner is a device just ahead of the outlet of a jet engine where extra fuel is burned in order to produce extra thrust.  It is has been used on military airplanes, primarily fighters.  Most jet engines do not have after-burners.

[2] I assume you know what thermodynamics is, but just in case, thermodynamics is sort of the study of energy and how it affects matter – sort of.  I would give you a more exact definition, but it would take too long and not really matter anyway.

WHY ENGINEER? — A cautionary tale for those who aspire to do so. — INTRO

I started writing this several months ago.  I would hope to turn it into a book at some point.  Let me know your thoughts on the matter.

Although this is non-fiction, I can’t say that all will agree with me about the truth of the matters discussed.  It is based upon my 50+ years of experience.  I would hope that counts  for something.

Here is the first part.  I’ll try to add to it each week, but no promises.

DEDICATION

This work is dedicated to Earl, a good guy and remarkable engineer.

PREFACE

Why would anyone want to be an engineer?  Why would you want to be in a profession that is one of the least understood by the public, your family, and oddly enough, your fellow engineers?

You can’t answer these questions if you don’t know what engineering is all about.  So, I would like to help you.  And I am not going to do that by giving you advice.  The decision to become an engineer is completely up to you.  I’m simply going to tell you what it takes to be one and what it’s like to be one.  If this book influences your decision, if it causes some of you to abandon the idea and others to become an engineer, then this book has done all it can.

This book is not about the impact of engineering on civilization.  It is about the impact of engineering on you.   And I don’t know what that impact will be.  Your view of the impact is your view of the impact.

So, who am I to lead you down this path?  If I said there was a PhD after my name, most people would be satisfied.  Well, there isn’t.  If I said I was the engineering director for some large engineering firm, that might satisfy some, but I’m not.   I am an engineer – period.  If you want to know more, I am an aerospace engineer.  I have an undergraduate degree in mechanical engineering from Stevens Institute of Technology and a masters degree from Rensselaer Polytechnic Institute.  I am a licensed professional engineer in the State of Washington.  I started as an engineer in 1962, and at this writing, I am still a working engineer.

So, why write this book?  As long as I can remember there has always been a huge shortage of engineers in the United States, probably the whole world – but quantity isn’t everything.  I’m more interested in quality.  And I don’t think there’s much emphasis on it.  Being a brilliant student does not automatically make you a good engineer.  Answering the question as to why you are going into engineering by saying that you are good at math and science is not much of an answer when you have no clue as to what engineering is all about.  So let’s talk a little philosophy.

I once had a professor of industrial engineering who didn’t  fit the usual professorial mold.  He was what some would call “street smart.”  He probably made more money as a consultant than he did as a professor, and I would guess enjoyed it more also.  He had a simple definition for the word “engineer”.

“An engineer is someone who can do for one dollar what any fool can do for ten dollars.”

If you think you can fill that bill and would enjoy doing so, maybe you should go into engineering.  If you think the definition ignores the loftier goals of engineering, then beware! 

Introduction

I don’t know, maybe I should put the introduction before the preface.  What do you think?  There’s a set of rules here, but I’m not sure what they are.  If it bothers you, just read the introduction first.  However, I don’t recommend that procedure.  This is where I tell you what is in the book in greater detail.  I wrote the preface to introduce the subject.  Here is where I introduce the book.

So, what would you like to know?  I don’t really expect an answer, but it is something you should consider.  I’ll consider it also if you send it to me.

I see nine topics of interest when it comes to deciding about becoming an engineer:

  1.  What is engineering?
  2. What should you put in your head?
  3. What can you only learn on the job?
  4. What is the difference between research, development, and production?
  5. What influences decisions?
  6. How do ethics fit in?
  7. What do I need to know about office politics?
  8. How much does engineering pay?
  9. Some rules of thumb!

I think I’ll break the book up into nine chapters and cover each topic separately.

So, that’s what is going to be in the book.  Now let’s see how many pages it turns out to be.